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SUMMARY

We examined benthic habitat and invertebrate communities in
several tributaries to Big Creek (within the Frank Church
Wilderness Area) and to the South Fork of the Salmon River
(adjacent to the wilderness area). Our goals were to provide
baseline data for these streams and to measure possible effects
from recent wildfires that occurred in the catchments of some of
the streams we studied. 1In general, we observed no immediate
effect of the Chicken Fire on the S.F. Salmon River tributaries,
likely due to the patchy nature of the fire in the areas we
examined. Likewise, we have not observed major changes in the
channel or substrata characteristics in Big Creek tributaries
burned by the 1988 Golden Fire, despite removal of the
surrounding terrestrial vegetation. However, although only minor
in-stream habitat changes have occurred in the burned systems to
date, we hypothesize that the burned streams will be more
severely influenced by increased discharge than will the
reference streams. Both catchments experienced unusually high
runoff during the spring of 1996, and we plan to examine the
effect of the high flows on habitat and biotic variables
following a return to baseflow conditions. '

In the Big Creek tributaries, macroinvertebrate density and
diversity appeared more temporally variable in the reference
streams than in the burned streams. Richness ranged around
approximately 20-30 taxa in the Big Creek streams, except for
Goat Creek which had slightly lower richness. In the S.F. Salmon
tributaries, only minor year-to-year variation was seen in taxa
richness, although this observation is based on only two years of
data. 1In general, invertebrate diversity appeared slightly lower
in the S.F. Salmon sites than in the Big Creek sites (approx. 5-
10 fewer taxa). Taxa richness in both catchments was similar to
that in streams along the Middle Fork of the Salmon River and to

streams in Yellowstone National Park.



Measurement of CPOM retention, using plastic leaf analogs,
indicated greater retention in the burned portion of Cliff Creek
than in the unburned portion. This reflects the fact that trees,
which were killed by the fire but initially left standing, have
begun to enter the stream channel. Thus, salvage logging, which
removes the dead, standing trees, may slow recovery of stream
ecosystems from wildfire, at least in terms of channel stability
and CPOM retention. Functional measures clearly are needed to
fully understand the effects of disturbances on stream
ecosystems. Future monitoring should include functional, as well
as structural, parameters and possibly seasonal measurement of
those parameters which are expected to display strong seasonal

variation.



INTRODUCTION

Our primary research goal during 1995 was to continue

monitoring tributaries to Big Creek and the South Fork of the

Salmon River (S.F. Salmon) that we had examined in previous
years. These streams were examined as part of an on-going effort
to study the immediate and long-term effects of wildfire on

Sstream ecosystems in the Payette National Forest (see Royer et
i al. 1995). The studies in the Big Creek catchment were designed
: to examine the influence of the 1988 Golden Fire, while those in

the S.F. Salmon catchment examined the 1994 Chicken Fire.

Along with routine biomonitoring, we also measured coarse
particulate organic matter (CPOM) retention in the burned and
unburned reaches of Cliff Creek. Retention of CPOM is an

important functional characteristic in stream ecosystems. CPOM

Fu is the primary energy source for most forested, mountain streams
such as Cliff Creek. Wildfire is thought to alter CPOM retention
capabilities by changing channel morphology and woody debris (a
major CPOM retention device) inputs. Although limited in scope,
this experiment was a first attempt to incorporate such
functional measures in our examination of wildfire effects on

streams of the Frank Church Wilderness Area.

For all streams examined, the results provide baseline

habitat and macroinvertebrate data against which the effects of
future disturbances (natural or anthropogenic) can be measured.
;£ For example, small temperature dataloggers were used to obtain a
complete annual thermograph for two representative streams: Rush
and Pioneer Creeks. These data can now be used to document the

Lok
G

influence of disturbances that may alter riparian shading and

subsequently change thermal conditions in the streams (e.g.,

wildfire or insect outbreak). The experimental timber harvest,
scheduled for autumn 1996, in the catchment of Tailholt Creek

(USFS 1995) is another example of the usefulness of base-line

data; given the data collected to date, biological effects from




the logging can be examined.
STUDY SITE DESCRIPTIONS

The study streams were located within the Payette National
Forest in central Idaho either (1) along Big Creek in the Frank
Church ’‘River of No Return’ Wilderness Area or (2) along the
South Fork of the Salmon River just outside the wilderness area
(Table 1). In both catchments, the streams flow through steep
valleys with forested slopes of primarily Douglas Fir and
Ponderosa Pine and extensive areas of bare rock. Open areas of
grass and sagebrush are common on the drier slopes in both
catchments. The majority of the annual precipitation occurs as
snow, resulting in peak'flows during spring and early summer.
The streams generally remain at baseflow conditions from mid-

summer through autumn.

Study streams in the Big Creek catchment were influenced, to
varying degrees, by either the Golden Fire of 1988 or the Rush
Point Fire of 1991. The upper portions of the Cliff and Cougar
were affected by the Golden Fire; Goat Creek was not burned by
the wildfire, but rather by an intentional ’back-burn’ used to
slow the progress of the wildfire. Cave Creek serves as a
reference for these sites. All of the above streams have a
southern aspect. The upper portion of the Rush and Pioneer Creek
catchments were minimally influenced by the Rush Point Fire and
have northern aspects. Thus they provide a comparison with the
south-facing streams listed above. In the S.F. Salmon catchment,
Pidgeon and Fritser Creek were moderately burned during the
Chicken Fire of 1994. Tailholt and Circle End were not affected
by the Chicken Fire. All of the S.F. Salmon tributaries we

examined had a southeastern aspect.
METHODS

General field methods used for the various segments of this



Table 1. Location of the study streams in the Big Creek and S.F. Salmon catchments.

Stream Elevation Longitude Latitude Township  Range

(m)

PR

Big Creek Catchment

Rush Cr. 1170 114 51'W 45 07'N T20N R13E
Pioneer Cr. 1170 114 51'W 45 06'N T20N R13E
Cave Cr. 1220 114 57W 45 08N T21 N R12E
Cabin Cr. 1300 114 56W 45 09N T21N R12E
g Cliff Cr. (upper) 1680 114 51'W 45 08'N T20N R13E
s Cliff Cr. (lower) 1200 114 51'W 45 O7'N T20N R13E
Goat Cr., 1130 114 48'W 45 Q07'N T20N R13E
Cougar Cr. 1100 114 49'W 45 07'N T20N R13E

S.F. Salmon Catchment

L Circle End Cr. 1110 115 40W 45 02N T20N  ROGE
Tailholt Cr. 1110 115 40W 45 02N T20N  ROGE
Pidgeon Cr. 1110 115 38'W 45 04'N T20N RO7E
Fritser Cr. 1100 115 37W 45 05N T20N  RO7E
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study are summarized in Table 2. The methods were consistent
with methods used in our previous studies of wildfire and
wilderness streams. These are relatively routine in stream
ecology and are described in detail in standard reference sources
(Weber 1973, Greeson et al. 1977, Lind 1979, Stednik 1991,
Merritt and Cummins 1996, APHA 1992) or in more specific
references listed in Table 2. Mean substratum size, water
depths, and near-bed water velocities were determined at 100
random locations along a substantial (ca. 200 meter) reach of
stream. Methods for sampling macroinvertebrates are described
in Platts et al. (1983). Procedures for sample analysis are
described briefly in Table 2.

Density, biomass, taxa richness, and Simpson’s Index were
determined for all sites and years. In addition, rapid
bioassessment metrics (Robinson and Minshall 1995) and principal
components analysis (PCA) were used to examine the
macroinvertebrate communities of the Big Creek sites from 1993-
95. The invertebrate metrics included: density, biomass, taxa
richness, Ephemeroptera-Plecoptera-Trichoptera (EPT) richness,
SEPT, Simpson’s Index, %dominance, %Oligochaeta, %Chironomidae,
%filterers, and %scrapers. A similar analysis is planned for the
data from the S.F. Salmon sites, and for the complete Big Creek

data set, and will be reported on in the future.

The measurement of CPOM retention in Cliff Creek was
conducted by releasing 100 leaf analogs into the upstream end of
a 100 m reach (Speaker et al. 1988). The leaf analogs were
pieces of biodegradable surveyor’s flagging 3 cm wide by
approximately 6 cm long and brightly colored to aid in recovery.
All 100 analogs were released individually over a 2-3 minute time
period and immediately upstream of a mixing zone. A block-net
was situated at the downstream end of the reach to quantify the
number of analogs transported through the study reach.
Approximately 2.5 hours after the release, the analogs were

collected, beginning at the block-net and working upstream. The
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distance traveled and the type of retention device (e.g., woody
debris, cobble, etc.) were recorded.

RESULTS
Big Creek Tributaries

In general, relatively minor year to year variation has been
observed in the physical and chemical parameters measured (Table
3). This should provide a solid base for evaluating the effects
of future disturbances on these streams. Within each stream,
measures of benthic habitat heterogeneity also have displayed
relatively little annual variation (Table 4). The exception may
be an increase in substrate embeddedness in Cliff and Goat
Creeks, which have both increased from approx. 40% in 1993 to
approx. 65% in 1995. Thermal conditions, measured from May 1994
through May 1995, were distinctly different between Pioneer and
Rush Creeks. Both maximum and minimum temperatures were
consistently greater in 6th order Rush Creek than in 2nd order
Pioneer during all seasons except winter (Fig. 1) . The annual

range in temperature was 20°C in Rush and 12°C in Pioneer.

Mean dailly temperatures (MDT) were used to calculate
cumulative degree days. Again, Rush was notably warmer than
Pioneer (Fig. 2). The greatest difference in MDT occurred from
June through October, when Rush was as much as 6°C warmer than
Pioneer. Figure 3 shows the cumulative relative frequency of MDT
in the two streams. All MDT in Pioneer were <11°C, while in Rush
20% of the MDT were >11°C (Fig. 3). Both streams have similar
aspects, thus it is likely the larger size and more open canopy
of Rush Creek is responsible for the warmer thermal conditions in
that stream. We currently have dataloggers in Upper Cliff,
Cliff, Pioneer, Rush, and Cougar Creeks and data from these

streams will be presented in the future.

Mean values of benthic organic matter (BOM) measured during



Table 3. Discharge and various chemical measures for study streams.

Stream Year Discharge Alkalinity Hardness Conductance pH
(m3/s) (mg CaCO3/L) (uS/ecm @ 20C)
Rush 1988 1.61 36 30 110 7.8
1991 ' 103 8.2
1992 1.10 46 46 95 8.4
1993 0.31 7.9
1994 1.56 77
1995 1.75 32 57 76 8.2
Pioneer 1990 0.16 62 86 88 8.1
1991 0.01 125 8.0
1993 0.02 26 48 72
1994 0.17 113
1995 0.21 42 81 135 7.9
Cave 1990 0.31 24 44 39 7.9
1993 0.08 19 24 55
1994 0.21
1995 0.17 20 40 48 8.1
Cliff 1990 0.32 35 66 61 8.2
1991 0.18 77 71 73 8.2
1992 0.08 48 49 99 8.0
1993 0.09 26 44 77 7.7
1994 0.10 79
1995 0.15 34 53 93 8.2
Goat 1990 0.01 86 110 139 8.1
1991 0.09 49 51 153 8.4
1992 0.01 80 76 151 8.2
1993 0.01 41 68 116 8.1
1994 0.01 148
1995 0.01 56 93 140 8.1
Cougar 1990 0.11 46 71 70 8.5
1991 0.10 36 32 93 7.4
1992 0.01 59 60 113 8.2
1993 0.02 33 48 94 7.7
1994 0.08
1995 0.10 48 85 107 8.2

.10



Table 4. Habitat heterogeneity measures for study streams in the Big Creek catchment. SD = standard
deviation, CV = coefficient of variation.

! Substrate Substrate Bankfull Baseflow
b Size Embeddedness Width Depth
(cm) (%) (m) (cm)
Stream Year mean SD CV mean SD cv mean SD mean SD
(n=100) (n=100) (n=5) (n=100)
Rush 1988 14.6 14.0 0.96 15.1 35.0 10.0
{d 1992 13.3 9.2 0.69 18.8 26.7 0.96 12.0 21.0 10.0
1993 21.3 14.8 0.69 35.0 28.9 0.51 13.4 1.5 26.2 7.3

1994 13.9 13.2 0.95 39.3 34.0 0.46 6.3 4.8 26.2 7.9
1995 - = 22.6 16.7 0.74 25.0 262 1.05 11.8 0.6 35.0 10.3

Pioneer 1990 16.7 140 0.84 12.5 239 1.44 34 16.0 4.5

1993 19.5 18.7 0.96 33.8 28.8 0.53 2.9 0.9 15.3 7.7
- 1994 13.9 152 1.09 34.3 33.7 0.53 1.7 4.2 18.0 7.9
f 1995 15.2 17.4 1.14 45.3 36.3 0.80 3.0 0.6 17.5 10.1
B

- Cave 1990 18.8 122 0.65 6.1 15.0 6.0
1993 18.2 17.0 0.93 59.8 29.8 0.30 5.4 0.5 15.3 8.1
1994 18.3 159 0.87 45.0 33.9. 0.40 4.1 8.1 15.6 9.5
1995 15.1 18.7 1.24 56.5 33.1 0.59 5.2 1.2 18.8 7.9

Cliff 1990 25.3 17.7 0.70 3.5 20.0 4.0
1991 22.5 20.3 0.90 3.8 20.0 8.0
1992 26.8 26.8 1.00 5.5 20.0 14.0

1993 21.5 16.8 0.78 41.8 316 0.43 3.2 0.7 16.4 8.3
1994 19.5 16.3 0.84 40.9 30.8 0.44 2.0 6.4 20.9 10.2
1995 21.5 244 1.13 66.0 73.4 1.1 3.5 0.7 22.1 10.7

E Goat 1990 97 165 1.70 0.9 100 2.0
- 1991 10.9 16.4 1.50 0.9 10.0 3.0
1992 131 17.0 1.30 0.8 100 7.0

1993 17.5 16.6 0.95 43.8 354 0.41 1.1 0.3 12.0 4.1
1994 11.7 16.1 1.38 68.5 311 0.26 0.9 0.2 10.4 4.4
1995 12.0 14.0 1.16 65.3 345 0.53 1.2 0.3 10.8 5.7

Cougar 1990 216 13.0 0.60 2.7 20.0
1991 226 274 1.20 3.1 200 6.0
L 1992 13.0 143 1.10 2.6 200 200

1993 211 20.9 0.99 42.5 30.5 0.42 2.5 0.9 16.3 8.1
1994 15.5 11.9 077 50.3 33.8 0.36 1.6 0.7 18.8 10.3
1995 19.2 171 0.89 47.5 31.5 0.66 25 0.6 20.3 11.3

[




ey

:
e
(S

18 - Pioneer Cr. B
16 - _ Maximum -
—~ 14 -
O
~ 12 —
o
E 10 = -
© 8 —
5
o, b —
5 4l ]
B
2 - _
0
-2 l | L J ] ! l
5/94 7/94  9/94 11/94  1/95 3/95  5/95
20
18 = Rush Cr. 7
16 L ——Maximum -
7 1 T Minimum
~~ ~+ =
O
o\/ 12 I
=10 - s
5 el ]
2 6 -
5 o4l ]
F
2 | —%
o L ! | L " S |

5/94 7/94 9/94 11/94 1/95 3/95 5/95

Fig. 1. Maximum and minimum water temperatures in Pioneer
(upper graph) and Rush (lower graph) Creeks from May 1994—
May 1995. ‘

(12



sAe( @9139(

00c¢

00y

009

008

0001

00clL

00|

0091

0081

000c¢

S6 AoW 0L S6 4dv 01

'G66T A — ¥661 Le WoJj s3o04) ysny pue
Jo2UOl{ Ul sdep 99dFap salje[nNUWIND pue aanjetaduia) Jojem A[rep uesy g Jiy

G6 oW QL G6 984 01 G6 uoP Ol +6 983 0L #6 AON Ol

¥6 150 Ol

6 dog 01 ¢6 bnv 01

+6 INP 0L $6 UNP 0L 6 ADW 01

J92UO0Ilg

]

I I J

Isauold

Ol

cl

¥l

91

81l

(QO) sanjededwa], A[Teq UBSN

13



I 8 I I T T T
100 + /H—O—O—<v>7$
90 L o Pioneer o v B

v Rush S

Cumulative Frequency (%)

v
/ )
B 20 L _
10 -
O | | | | | i |
0 2 4 6 8 10 12 14 16

Mean Daily Water Temperature (OC)

Fig. 3. Cumulative frequency of mean daily water temperatures
in Pioneer and Rush Creeks. Graph based on data from May 1994
through May 1995.

14



£
b
5

1995 were similar to those observed in previous years for Rush,
Pioneer, Cave, and Cliff Creeks (Fig. 4). Goat Creek displayed a
BOM value similar to that of 1994, but reduced from 1990-1992.
The BOM value in Cougar Creek was similar to the value obtained
in 1990 and greater than those seen in 1991-1994. However, in
both 1990 and 1995 the variation in BOM was quite large in Cougar
Creek.

For all streams, the mean values of periphyton chl a
obtained in 1995 were similar to values from 1994; all were less
than 20 mg/m?. During 1995, periphyton chl a was similar among
Rush, Pioneer, Cave, and Cliff Creeks. Mean periphyton ash-free
dry mass (AFDM) was more variable between streams than was chl a
(Fig. 5). With the exception of Goat Creek, all streams
displayed greater AFDM in 1995 than in 1994. Within 1995, AFDM
was approximately twice as great in Rush than in Pioneer, Cave,
or Cliff.

Mean density of aquatic macroinvertebrates measured in 1995
was lower in all streams, compared to values from 1994 (Fig. 6).
The reduction was greatest in Pioneer Creek, were density in 1995
was approximately 50% of the 1994 value. The greatest densities
in 1995 were observed in Cliff and Rush at approximately 5,000
individuals/m®*. Biomass displayed a trend similar to that of
density in Rush, Pioneer, Cave, and Cliff Creeks. Biomass in
Goat and Cougar during 1995 was slightly elevated from 1994,
although the variance in 1995 was large. Mean biomass was
greatest in Rush Creek, however the value was only 900 mg/m?.
Rush, Pioneer, Cave, and Cliff Creeks all exhibited mean biomass
values in 1995 that were reduced by >50% from values observed in
1994 (Fig. 6).

Macroinvertebrate taxa richness and Simpson’s Index did not
exhibit the dramatic reductions seen in density and biomass. 1In
fact, taxa richness was unchanged from 1994 to 1995 in Rush

Creek, and similar or only slightly reduced from previous years
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g

in the other streams (Fig. 7). As in previous years, the
greatest richness value was observed in Rush Creek (29 taxa) and
the lowest in Goat Creek (14 taxa). Simpson’s Index was lowest
in Rush (0.11) and greatest in Goat Creek (0.35), although the
variance in Goat was large. In general, Rush Creek appears to be
the most diverse and Goat the least diverse system, in terms of
aquatic macroinvertebrates. Of the streams examined, Rush is the
largest and Goat the smallest; stream size may be at least partly
responsible for the aifferences in diversity (Minshall et al.
1985) .

As with total taxa richness, richness of EPT taxa was lowest
in Goat Creek (6-10 taxa) (Fig. 8). Community dominance (i.e.,
relative abundance of the most common taxa) ranged from ca. 0.2 -
0.5 among all streams from 1993-95. Rush, Cave, and Goat have
all displayed a consistent increase in the abundance of
Oligochaeta from 1993-95, although in general Cliff appears to
contain the most Oligochaeta (Fig. 9). The abundance of
Chironomidae was variable both among streams and between years
within a stream. This may be a result of among-year differences
in the time of sampling (i.e., just before versus just after
emergence of a cohort), or the patchy distribution of these
organisms in the stream. The relative abundance of filterers was
low among all sites and years (<0.2), as expected in headwater
mountain streams (sensu Vannote et al. 1980). The relative
abundance of scrapers did not exhibit any distinct pattern, but
was lesgss than 0.4 for all streams from 1993-95.

PCA was used to analyze all the streams, years, and metrics.
Figure 10 shows the results from the PCA, with Factor 1 (x-axis)
showing increasing diversity and Factor 2 (y-axis) indicating
increasing abundance. The individual variables that contributed
to the factors are shown in parentheses. The + or - sign
indicates the direction of change in the variable. Cliff and
Cougar displayed much less year-to-year variation than did Cave,

Rush, or Pioneer. For the years examined, Goat Creek showed

.19
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from 1993-1995. Error bars equal +1SD from the mean, n=5.
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little variation on Factor 1, but considerable changes in Factor

2. In general, the reference streams displayed more variation in
these variables than did Cliff or Cougar Creeks. Furthermore,
the reference streams all appeared to vary in a consistent manner
(moving up and to the left over time in Fig. 10), suggesting

similar processes were operating in each reference stream.

The relative abundances of the 15 most common
macroinvertebrate taxa found in 1995 are presented for each
stream in Table 5. As in 1994, the most common taxa in 1995 were
Chironomidae, Oligochaeta, Heterlimnius, and Baetis bicaudatus.

Upper and Lower Cliff Creek

Discharge in both Upper (burned) and Lower (unburned) Cliff
Creek was approximately two fold greater in 1995 as in 1994
(Table 6). Conductance, alkalinity, and hardness all were
greater in Lower Cliff than in Upper Cliff. Mean BOM values were
the same in both reaches in 1995. 1In both 1994 and 1995,
periphyton chl a values were considerably greater in Lower Cliff
than in Upper Cliff. Periphyton AFDM values, however, were
nearly identical between the two reaches. Substratum size and
embeddedness and stream width also were quite similar among the
two reaches (Table 6).

The aquatic macroinvertebrate community was notably
different between the burned and unburned portions of Cliff Creek
in 1994. However, the patterns observed in 1994 were not
consistent with those found in 1995. For example, during 1994
macroinvertebrate density and taxa richness were significantly
greater in Upper Cliff, but there was no difference between the
reaches in 1995 (Fig. 11). Simpson’s Index showed the opposite
pattern in 1995 as was seen in 1994. Furthermore, mean biomass
was not different in 1994, but in 1995 it. was three times as
great in Upper Cliff as in Lower Cliff. The relative abundance

of functional feeding groups (after Merritt and Cummins 1996)

.24



Table 5. Relative abundance of the 15 most common macroinvertebrate taxa found in the study streams
during July 1995. SD = one standard deviation from the mean, n=5.

Rel. Abund. (%) Rel. Abund. (%)
Rush Cr. Mean SD Cougar Cr. Mean SD
Chironomidae 161 64 Oligochaeta 17.3 1.7
Oligochaeta 16.0 53 Chironomidae 16.6 7.3
Baetis bicaudatus 14.4 3.8 Baetis bicaudatus 135 4.4
Cinygmula 9.2 2.9 Heterlimnius 129 10.1
Hydracarina 8.5 1.0 Cinygmuia 9.8 5.6
Serratella inermis 7.0 1.7 Zapada 9.3 6.2
RE Epeorus longimanus 6.4 2.1 Parapsyche elis 21 2.6
o Simulium 5.3 3.2 Suwallia 1.7 1.6
b Optioservus 3.8 1.7 Megarcys 1.7 0.6
Hesperoperla pacifica 1.5 04 Hydracarina 1.5 1.2
Suwallia 1.4 0.7 Polycentropus 1.3 2.1
Heterlimnius 1.3 0.7 Turbetlaria 1.3 1.1
Brachycentrus 0.8 0.8 Lara 1.2 1.9
Oreogoton 0.7 0.4 Simulium 1.1 1.0
Micrasema 0.7 0.5 Dicronota 0.9 0.5
Pioneer Cr. Mean sD Cliff Cr. Mean SD
Oligochaeta 17.6 6.3 Oligochaeta 39.4 12.5
Chironomidae 15.0 131 Cinygmula , 11.0 4.8
Cinygmula 13.2 5.8 Chironomidae 10.8 5.0
Calineuria 10.2 2.6 Baetis bicaudatus 6.7 3.1
Heterlimnius 7.4 4.0 Zapada 4.9 0.8
Suwallia 7.0 3.8 Heterlimnius 4.8 3.4
Baetis bicaudatus 6.8 4.6 Epeorus longimanus 4.7 0.9
Zapada 6.3 6.4 Drunella doddsi 2.8 14
Hydracarina 2.9 1.8 Suwallia 2.6 1.0
Epeorus longimanus 25 1.8 Simulium 1.6 0.9
Polycentropus 24 1.0 Doliphilodes 1.4 1.1
Simulium 1.5 1.9 Drunella coloradensis 1.3 1.4
Turbellaria 1.4 1.9 Hydracarina 1.2 0.7
Neothremma 1.0 1.6 Polycentropus 0.9 0.8
Micrasema 0.8 0.9 Serratella inermis 0.8 0.5
Goat Cr. Mean SD CaveCr. . : Mean SD
N : Oligochaeta 459 24.2 Oligochaeta - 19.9 16.3
*;M Heterlimnius 121 6.4 Baetis bicaudatus 16.7 75
Chironomidae 11.8 9.5 Heterlimnius 143 8.4
Zapada 8.0 42 Chironomidae 135 6.1
Simulium 2.9 3.3 Simulium 10.1 12.5
Drunella coloradensis 2.8 4.2 Hydracarina 7.4 24
Cinygmula 2.0 1.3 Calineuria 31 0.9
Curculionidae 1.8 3.6 Cinygmula ’ 2.0 0.9
Baetis bicaudatus 1.4 1.4 Epeorus fongimanus 1.8 1.0
Suwallia 1.3 1.1 Serratelia inermis 1.5 1.2
N Coliembola 1.3 1.8 Skwala 1.4 1.0
: Turbellaria 1.2 0.7 Micrasema 1.0 0.5
Rhyacophila acropedes 1.1 1.2 Glutops 1.0 0.8
Hydracarina 1.0 1.3 Doliphilodes 0.6 0.7
i Dixa 0.8 1.0 Suwallia 0.5 0.5

L .25



Table 6. Benthic habitat variables measured in Upper and Lower CIiff Creek in August 1994
and July 1995, SD = standard deviation.

Q (m3/s) -

1994

1995
Specific Cond. (uS/cm @ 20C)

1994

1995 .
Alkalinity (mg CaCO@S/L)

1995
Hardness (mg CaCOB3/L)

’ 1995

BOM (g AFDM/m2)

1994

1995
Periphyton Chl-a (mg/m2)

1994

1995
Periphyton AFDM (g/m2)

1994

- 1995

Substrata Size (cm)

1994

1995
Substrata Embeddedness (%)

1994

1995
Stream Width (cm)

1994

1995

Upper Cliff Lower Cliff
(burned) {unburned)
0.06 0.09
0.14 0.15
47 98
- 93
16 34
40 53
mean 8D mean SD
14.9 12.0 40.1 28.3
30.8 25.2 29.7 4.9
3.2 0.9 6.3 4.6
0.7 0.5 10.3 3.3
1.4 0.4 2.1 0.6
4.0 3.9 4.2 1.2
21 14 19 16
26 28 22 24
37 25 41 31
73 96 66 73
273 166 201 64
440 70 350 70
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also displayed disparate patterns among years (Fig. 12). The
exception here was seen in the abundance of gatherers and
filterers, which were both greater in Lower Cliff in both years.
Predators represented a significantly greater proportion of the
macroinvertebrate community in the unburned reach than in the
burned reach in 1994; the opposite was seen in 1995. The
relative abundances of the 15 most common macroinvertebrate taxa
in each reach are presented in Table 7. Oligochaeta,

Chircnomidae, and Baetis were consistently among the most
abundant taxa in both years.

The two reaches displayed different patterns in retention of
CPOM (Fig. 13). The majority of the leaf analogs released in
Upper Cliff were retained within the first 30 meters, -with the
first 10 m containing the greatest percentage. In Lower Cliff,
the greatest percentage was in the 31-40 m section. It appeared
that a given leaf would travel further in Lower Cliff before

~being retained than it would in Upper Cliff. There also were

differences between the two reaches in the importance of various
retention devices. 1In both reaches woody debris accounted for
the majority of the retention (Fig. 14), although it was of
greater importance in Upper Cliff. The importance of slack water
and cobbles was approximately equal between the reaches.

Riparian vegetation was responsible for 8.1% of the retention
observed in Lower Cliff, but (although present) provided no

retention in Upper Cliff.
South Fork of the Salmon R. Tributaries

Our examination of the Pidgeon and Fritser Creek catchments
revealed only small areas of intense wildfire impact. The
riparian zones of both streams were relatively undamaged from the
Chicken Fire and the channels did not appear unstable. For these
reasons we did not expect to detect changes in the biota of

Pidgeon Creek (pre-fire data is not available for Fritser).
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Fig. 13. The distribution of leaf analogs retained in the 100m
study reach in Upper and Lower Cliff Creek during July 1995.
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Fig. 14. The relative importance of various CPOM retention devices

within the 100m study reaches (i.e., excluding the block net) in
Upper and Lower Cliff Creek during July 1995.



Circle End and Tailholt displayed similar substrata
characteristics, although Tailholt was approximately 50cm wider
and 15cm deeper than Circle End (Table 8). Pidgeon and Fritser
were similar to each other in terms of stream size and, in
general, approximately twice as large as Circle End and Tailholt.
Conductance showed the same spatial pattern in both 1994 and
1995: Circle End > Tailholt > Pidgeon (Fritser was measured only
in 1995, but had the lowest conductance of any stream, 23 uS/cm).
Alkalinity and hardness were measured only in 1995, but displayed

the same pattern as conductance.

Mean values of BOM were similar in 1994 and 1995 for Circle
End and Tailholt (Fig. 15). BOM in Pidgeon was greatly reduced
in 1995 from that seen 1994, however, the variance in 1994 was
large and the mean value was likely an overestimate. 1In 1995,
the greatest mean values of periphyton chl a and AFDM were
measured in Fritser Creek, although all the streams had similar
values. In general, chl a ranged from approximately 5-10 mg/m?
over both years of study, with the exception of Circle End in
1994 (Fig. 15). 1Indeed, Circle End was the only stream to
exhibit a notable change in periphyton standing crop from 1994 to
1995, with a decline in chl a and AFDM of 90 and 70%,
respectively.

Within each stream, mean values for the macroinvertebrate
indices were quite similar in 1994 and 1995 (Fig. 16). Among
streams, taxa richness ranged from 16 (Circle End 1995) to 30
(Fritser 1995). As in 1994, mean density was greatest in
Tailholt at approximately 7,000 individuals/m?. For both years,
Simpson’s Index was less than 0.22 in all streams. Although
similar in size, Fritser Creek contained greater
macroinvertebrate density, biomass, and taxavrichness than did
Pidgeon Creek. 1In Pidgeon Creek, which also was within the burn j
perimeter of the Chicken Fire, mean density and biomass were 1
slightly greater in 1995 than in 1994, however the variance in 3
these estimates also was notably larger in 1995. The relative
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abundances of the 15 most common macroinvertebrate taxa in each
stream are presented in Table 9. As seen in 1994, Chironomidae,
Baetis bicaudatus, Heterlimnius, Oligochaeta, and Yoroperla
brevis tended to be the most abundant taxa in the streams.
Optioservus, a small beetle, was not found at the time of
sampling in 1994, but was extremely common in 1995. The small
stonefly, Yoroperla brevis, continued to very abundant in Circle
End and Pidgeon Creeks, while absent or at very low density in

Tailholt and Fritser Creeks.
DISCUSSION

Water chemistry and in-stream habitat conditions in the Big
Creek tributaries have not changed significantly during the
course of our research (see Tables 3 and 4). This suggests that

in-stream habitat conditions have not yet been affected

- substantially by the Golden Fire. However, it is likely that the

stability of these systems has been reduced by the wildfire and
that future disturbances, mainly increased flows, will influence
the burned streams to a greater extent than the reference streams
(Gurtz and Wallace 1984, Minshall et al. 1995). For example, due
to loss of retention by terrestrial vegetation, the burned
systems should receive overland runoff at a faster rate than the
reference streams and subsequently be scoured more intensively.
We plan to examine this hypothesis during the summer of 1996, as
intensive flooding has occurred in both the Big Creek and S.F.
Salmon catchments from runoff of the»1995—96 snowpack.

The warmer thermal regime observed in Rush Creek, versus
Pioneer Creek, is likely due to the larger size and more open
canopy of Rush allowing greater solar heating. Early in the year
(March - May) and late in the year (October - November) the two
streams are nearly identical in temperature. However, during the
summer (June - September) Rush is considerably warmer than
Pioneer. Canopy shading appears to maintain cooler temperatures

in Pioneer. Canopy-opening disturbances (e.g., wildfire,
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logging) should alter the thermal regime in smaller, forested
streams, such as Pioneer, more so than in larger streams, such as
Rush. Data collected by the temperature loggers in Upper and
Lower Cliff will provide the opportunity to examine the influence
of the Golden Fire on the thermal regime of Cliff Creek This may
lead to further hypotheses regarding the effects of wildfire on

in-stream habitat conditions.

Rush Creek is considerably larger than any of the other
streams we sampled in the Big Creek catchment, and has a north
facing aspect (see Table 4). Pioneer is similar in size to the
burned streams, but also flows in a northerly direction. For
these reasons, neither Rush nor Pioneer are likely to be good
references for Cliff, Cougar, and Goat in relation to-the effects
of wildfire. Thus, we used Cave Creek as the reference
condition, although the data set for Cave is not as extensive as
that for Rush or Pioneer. Using mean values for each year (1990-
1995) as replicates, a one-way ANOVA with Tukey HSD was performed
to test for differences in density, biomass, richness, and
Simpson’s Index among Cave, Cliff, Cougar, and Goat. There were
no differences (alpha = 0.05) in biomass or Simpson’s Index
(Appendix A). However, Cave did have significantly greater
density than either Cougar or Goat and greater richness than
Goat. Interestingly, Cave, Cliff, and Cougar all had
significéntly greater richness than Goat. However, the
differences may be due to the small size of Goat Creek rather
than fire, particularly because the fire there was a controlled
back-burn, not wildfire.

The patterns observed in macroinvertebrate communities of
Upper and Lower Cliff Creek in 1995 were not consistent with
those seen in 1994. The influence of discharge may be
responsible for the inconsistent results; small spates following
precipitation events that did not scour the unburned portion of
Cliff may have scoured the bed of the burned portion. Clearly, a

longer temporal scale is required in order to distinguish natural
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variation from wildfire effects. Long-term monitoring provides
the baseline data needed to separate natural variation from true
disturbance effects. This is true for structural and functional
measures, both of which are needed to fully document the

influence of a given disturbance on an ecosystem. Functional

measures, such as organic matter transport and processing and
ecosystem metabolism, integrate conditions of the entire system
and often provide greater insight into the dynamics of streams

than do structural measures.

Our measure of organic matter transport, using leaf analogs
in the burned and unburned portions of Cliff Creek, showed that a
particle of CPOM would travel a shorter distance in Upper Cliff
than in Lower Cliff; the burned segment was more retentive. This

was due to the greater amount of large woody debris in Upper
Cliff. We observed that trees killed by the 1988 wildfire had
i begun to fall into the stream channel, increasing the amount of

retention structures in Upper Cliff. Retention of CPOM is

hypothesized to decrease following wildfire, as retention
structures are scoured away by increased discharge. When trees
killed by the wildfire (but left standing) begin to enter the
channel, CPOM retention may increase to levels equal to or

greater than that present before the wildfire. This may be one

of the mechanisms for recovery of the invertebrate communities
following wildfire. Thus, salvage logging may severely slow the
recovery of stream ecosystems from wildfire by removing the

retention devices that ultimately provide channel stability and

retain organic matter.

The Chicken Fire did not appear to alter habitat or biotic

g

3
S,

conditions in Pidgeon Creek. The density and biomass of

macroinvertebrates was actually greater following the wildfire.

Pre-fire data for Fritser Creek does not exist. However,

conditions in Fritser did not appear much different from those of

Circle End or Tailholt Creeks. Thus, the immediate influence of

the Chicken Fire on both Fritser and Pidgeon appeared to be
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minimal. However, the high flows that have occurred during the
spring of 1996 may have severely altered stream channel and
substrata characteristics in these systems. One of the goals in
monitoring these streams is to provided baseline data. In this
regard, the two years of habitat and biotic data from Tailholt
Creek can be used to examine potential influences from unusually
high flows and from the experimental logging scheduled for that
catchment. Other data, such as amount/quality of leaf litter
input, CPOM retention, and dynamics of dissolved organic carbon
also would be insightful in documenting the effects of the
experimental logging.

In general, diversity of the invertebrate communities was
slightly greater in the Big Creek streams than the S.F. Salmon
tributaries. Taxa richness ranged from approx. 20-30 in the Big
Creek streams and 16-25 in the S.F. Salmon sites. However, the
temporal scale of our sampling is much less in the S.F. Salmon
catchment than in Big Creek (2 versus 8 years, respectively).
These values of taxa richness are similar to those reported for
streams recovering from wildfire along the Middle Fork of the
Salmon River (Richards and Minshall 1992) and in Yellowstone
National Park (Minshall et al. 1995). The same invertebrate taxa
tended to predominate in both catchments, namely Chironomidae,
Oligochaeta, Heterlimnius, and Baetis. Other taxa appeared more
abundant in one catchment or the other. For example, Cinygmula
was common in the Big Creek streams, but appeared rarely in the
S.F. Salmon tributaries. Yoroperla brevis displayed the opposite
pattern, occurring commonly in the S.F. Salmon tributaries but

rarely in the Big Creek sites.
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Appendix A. Pairwise comparison probabilities from one way ANOVA
with Tukey HSD. -

Density
Cave Cliff Cougar Goat .
Cave 1.000
Cliff 0.304 1.000
Cougar 0.034 0.541 1.000
r Goat <0.001 ' 0.003 0.057 1.000
Biomass
Cave Cliff Cougar Goat
Cave 1.000
Cliff 0.318 1.000
Cougar 0.103 0.804 1.000
e Goat 0.062 0.634 0.990 - 1.000
Richness
Cave Cliff Cougar Goat
Cave 1.000
Cliff 0.473 1.000
Cougar 0.190 0.895 1.000
Goat 0.001 0.004 0.016 1.000

Simpson’s Index

Cave Cliff Cougar Goat
e Cave 1.000
3 Cliff 0.344 1.000
b Cougar 0.958 0.539 1.000
Goat 0.499 0.988 0.730 1.000
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